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Chapter 1

Introduction

Deriving Process-Structure-Property relations for materials begins by extracting use-

ful features from structures. This report aims to address the various techniques that

can be used in the quantitative examination of microstructure images, and provide

algorithms, workflows and conclusions based on their implementation. We also give

a detailed overview of how our data is generated, and the numerical nuances and

approximations involved in it. We test the algorithms presented on various compu-

tationally generated microstructures as a test case, and demonstrate the statistical

parameters captured through plots, and compare these plots to the visual microstruc-

tural images.

Having a complete and robust description of microstructure statistics is important

for two reasons. Firstly, it aids with the characterisation of microstructure images into

classes, enabling easier identification of materials with desired properties. Secondly,

properties can be predicted efficiently only with these robust features,that is, the

improvement in this feature selection directly impacts the study of material property.

Tools of statistics and computation can help us analyse microstructure images, and

this report aims to discuss the formulation, implementation and use cases of these

tools. The data sets of microstructures used in this report were computationally

generated through the Cahn-Hilliard equation, and the formulation of microstructure

generation is described. We also give a detailed overview of the extraction of prop-

erties such as elastic constants from the base microstructural image, and explain the

analytical calculations involved in the extraction of this property.

We discuss the important statistical parameters derived and then demonstrate

their applications on computationally generated microstructure images. We begin

with spatial probability distribution of states and discuss in detail the derivation and

implementation of the algorithm. How to interpret the probability distribution is
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discussed and tested on microstructures with varying anisotropy and composition.

Probability distributions are a key part of literature, and thus special emphases is

placed upon it.

Methods to quantify interface velocity and clustering are introduced and their

implementation details laid down in detail in the form of pseudo-code and workflows.

Since these are predecessors to other parameters, their implementation details are

important to save on manpower and computation time. Methodology to track pre-

cipitates based on the clustering algorithms is presented, with emphasis on algorithmic

selection and workflow.

The ability to isolate an individual precipitate and track its evolution in time

opens the door to the extraction of geometric information from precipitates. These

geometric features are calculated and tested on evolving precipitates in this report.

Furthermore, additional shape specific properties like convexity are also derived and

calculated. Interaction between precipitates is also studied based on these geometric

and statistical parameters.

The penultimate chapter titled ’Results and Discussion’ provides examples where

the parameters mentioned above are extracted. The results obtained by plotting these

parameters are compared to the microstructure images to verify the results and infer

how the changes in statistical parameters correlate with the visual changes in evolving

microstructure images. We also include results from the elastic modulus calculation

and demonstrate how certain properties and our features are correlated.

The overall aim of this report is to provide a comprehensive description of the

statistical parameters, their methods and how they can be correlated to material

property.

2



Chapter 2

Literature Survey

Process-Structure-Property(PSP) relations have been an emerging field of study

in the last decade, with significant advances in the domains of material characteri-

zation. Structure-Property relations, in particular have been extensively studied to

accelerate the process of high throughput Computational Material design [1]. The

idea behind this process is that, once we have sufficient databases of microstructure

or other material characteristics, the process of developing new materials can be made

faster by using the links in the Structure-Property relations. That is,we can predict

the properties of new materials just by an interpolation of existing feature data of al-

ready processed materials. Furthermore, these relations can also provide us important

insights into why certain features seen in the materials lead to distinct properties.

Structure property relations are built upon the foundation of identifying the most

important features from experimental tests on materials. For instance, in the mi-

crostructure itself, its phases and their spatial distribution often govern how they

respond to external stress or stimuli, and a mapping from this spatial information

to the property would fast-forward the selection of materials. The key to develop

these relations is to have a robust method of extraction of useful features which cap-

ture most of the information associated with the material and has clear implications

on the properties associated with it. In microstructures, the most common metric

to judge the usefulness of these features is their ability to capture statistical and

geometric spatial information, all the while being sufficient enough to enable recon-

struction of the original microstructure or ensembles of it. Ensembles here refer to two

microstructures of the same material, which might differ due to difference in observa-

tion time or location. The reconstruction of the original microstructure or ensembles

of it would collate all microstructures of a material into a single class, thereby making

the material accessible and easier to identify [2][1].Reconstruction methods are also
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of importance, and efficiency of these methods is an improving field of study.

Once the features have been extracted, building structure-property relations in-

volves training models on available experimental or simulated property data. A wide

variety of methods to build these models have been suggested, and these have only

picked up in number with the emergence of Machine Learning and their improved per-

formance on classification and regression tasks [3]. The applications of these models

are diverse, and shall be elaborated in further sections.

The next section introduces Phase Field Modeling, which is used to generate the

data/microstructures used for our analysis. We then examine how we can extract

the elastic modulus from our microstructures computationally, which becomes our

data related to material property. The subsequent sections then discuss the type of

features and the methods to extract them, followed by reconstruction methods for

2D microstructures. This will be followed by discussion on feature compression and

building models for structure-property relations. Microstructure evolution is another

topic touched upon, and the methods in image processing dissected. We also briefly

touch upon the recent push into Neural Networks and their implications.

2.1 Phase Field Modeling

Phase field modeling is an important method to study the evolution of a wide variety

of microstructures. In such models, microstructures are generally expressed in the

form of field variables such as composition, and the kinetics and evolution can be

predicted by differential equations derived from thermodynamics. These models can

be used to predicted the interface behaviour, and are traditionally broken down into

sharp and diffuse interface models. Sharp interface models have a discontinuity in

the field variables such as composition, and have an infinitely sharp interface. These

are distinctly advantageous since they allow us to define and track the interfaces. On

the other hand, diffuse interface models traditionally have a continuous interpola-

tion of the field variables along the interface, for instance the non-linear change in

composition between two phases.

Fick’s law predicts the movement of constituents down the gradient, and thus

is ineffective in explaining the presence and evolution of interfaces in traditional

microstructures. Models were thus required to explain the uphill diffusion of con-

stituents. To account for this uphill diffusion and effect of interfaces on the evolution

of microstructure, a modified free energy functional was introduced.
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G = Nv

∫
V

[g0(c) + κ|∇c|2]dV (2.1)

Here, G corresponds to the free energy, c the composition, g0(c) the bulk free

energy density per atom (traditionally a double well potential function) and κ the

constant which incorporates the interface effects into the free energy.

Substituting these into the modified Fick’s law, we obtain the now ubiquitous

Cahn-Hilliard equation [4] as follows, with M as the mobility tensor, with g
′′
0 and κ

as constants.

∂c

∂t
= M [g

′′

0∇2c− 2κ∇4c] (2.2)

Microstructures can also be described using non-conserved order parameters, whose

evolution is traditionally expressed through the Allen-Cahn equation [5], which in-

corporates the order parameter (φ), κ to account for the boundary and a relaxation

parameter (L) which controls the driving force for order parameter change. The

Allen-Cahn equation is as follows, with f traditionally being a double well free en-

ergy potential.

∂φ

∂t
= −L∂f

∂φ
+ 2Lκ∇2φ (2.3)

Given the differential equations describing the order parameter change, they can

be solved through spectral techniques involving the use of Fast Fourier Transforms [6].

FFT based techniques are particularly useful because microstructures are typically

constructed with periodic boundary conditions, which makes transformation into the

Fourier space trivial.

2.2 Homogenisation Theory

Homogenisation is the calculation of effective behaviour of material based on the

behaviour of it’s local constituents and their spatial distribution. More specifically

to materials, it could involve the calculation of effective stresses or strains from local

strains and stresses. Fundamental tenets to solve the homogenisation problem for

stresses and strain is to solve the equation of mechanical equilibrium, a key part of

this thesis.
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Traditional ways to solve the local value problem involve the use of the Finite

Element Method [7], which involves discretizing the unit cell into elementary regions,

and calculating the values of the displacement field in these regions. Since microstruc-

tures are often generated with periodic boundary conditions, the strains and stresses

in a unit cell are also periodic, which means they can be split into effective and pe-

riodic strain and stress fields [8]. For instance, in a fixed loading problem, where E

corresponds to the effective strain and u∗ corresponds to the periodic strain field, the

net displacement at a location r can be generalized as follows.

u = E.r + u∗ (2.4)

Here E also corresponds to the mean strain tensor of the cell, that is:

E = 〈{εij}〉 =
1

V

∫
Ω

εijdΩ (2.5)

The local stress field σ is periodic, and obeys the equation of mechanical equilib-

rium at each point on the lattice and the boundary (div(σ) = 0) [9]. Furthermore,

the traction (σ.n) on the opposite sides of the unit cells must be anti-periodic [10].

Finally, the net stress must be equal to the mean stress, which gives us the three

conditions to solve the equation of mechanical equilibrium.

While dealing with periodic boundary conditions, it is effective to use Fast Fourier

Transform(FFT) based techniques to solve for the displacements and effective strains.

The iterative procedure involves repeatedly solving the equation of mechanical equi-

librium and effective strain to obtain the optimal local displacement field.

2.3 Spatial Features

Spatial features or characterisation of microstructure must capture both geometric

and statistical information. Geometric features generally consist of parameters re-

lated to shape and size of the local states. Local states can be defined as the phases

of our microstructure at a point in space. Statistical features capture features like

size distribution of the local states, probability of finding local states in space and

alignment or anisotropy associated with the microstructure. In literature, the sta-

tistical parameters most frequently studied are the n-point correlation functions and

linear path function.

6



2.3.1 N-point correlation function

The N-point correlation function is defined as finding ’n’ specific local states in a local

neighbourhood. In practice, the 2-point correlation function is much more ubiquitous.

It can be defined as the probability of finding 2 specific local states at a spatial

vector r from each other. In isotropic microstructures, since the spatial distribution

is direction invariant, a more common representation is in terms of Si
2(r), where i

represents the ith local state, r represents the distance and Si
2(r) is a function denoting

the probability of finding 2 ith local states at a distance r from each other.

Calculating Si
2(r) can be done most efficiently through Fast Fourier Transform

methods [11]. Here, we can use the Convolution theorem in the Fourier space to

simplify computation. Averaging across directions after calculating 2 point corre-

lation presents us with the Si
2(r). Si

2(r) can also be calculated through Supervised

Learning[20] as well.

2 Point correlations are efficient since they capture significant information about

the sizes of the local states and their distribution in space. They also include infor-

mation about the volume fraction of the 2 phases or local states. Visualization of the

2-point correlation function can capture both the anisotropy and sizes of individual

local states. Si
2(r) can be considered as the 2-point correlation function averaged over

all directions. Si
2(r) can give us information about the average distribution of states,

but loses out on parameters representing anisotropy.

The correlations are particularly effective because they provide information to

enable reconstruction of the original microstructures from the derived correlation

function. Furthermore, for piece-wise uniform structures with smooth boundaries,

the original microstructure can be completely reconstructed from only the 2-point

correlation function[12], subject to a translation in space. This phenomenon is fur-

ther demonstrated in [2] for simulated microstructures. For ensembles of similar

microstructure, the 2-point correlations show sufficient similarity to be considered as

acquisition invariant features, and are extensively used in characterisation.

2.3.2 Linear Path Function

The Linear Path Functions captures the amount of clustering in a specific local state

in the microstructures. It can be defined as the probability that a randomly oriented

line segment of length r is completely encapsulated by a single phase[13], say phase

1. Since the size of a phase is limited, the Linear path function, ie. L11(r), tends to

0 as r increases. L11(r) is typically calculated by using Monte Carlo simulations, for

7



both 2D and 3D microstructures.

The Linear Path function can also have the angle of inclination of the line seg-

ments θ and φ as a parameters for 3D microstructures, the function thus becomes

L11(r, θ, φ) and L22(r, θ, φ) for the phases 1 and 2 respectively. Both these func-

tions add information about anisotropy, and would converge to L11(r) and L22(r) for

isotropic microstructures.

Calculation of these generally involves Monte Carlo simulations. In [14], a method

is presented where L11(r) can be calculated by moving a 1D array across an image,

an counting the number of phase interfaces. Considering isotropic microstructures,

this can be only done along the horizontal and vertical directions to calculate samples

for L11(r) probability.

2.3.3 Geometric and Further statistical Parameters

In addition to the probability based descriptors, geometric features can add another

layer of information. Traditional features of such kind provide information along 3

domains-

1. Composition : Described by the volume fraction of the phases

2. Dispersion : By calculating distances between precipitate centres

3. Size and Geometry: Calculated my measuring precipitate area and inclination

Distributions of dispersion-length, size and geometry can be calculated, usually

as normal distributions. Descriptions based on these parameters have also proved

effective in characterization and reconstruction of the original microstructure [15].

Furthermore, reconstruction of 3D microstructures from 2D image acquisitions have

also proved successful, where 3D size and geometric parameters can be calculated by

geometric operations on the 2D features [16].

Since experimental data is often noisy, it requires digital pre-processing before

being used to generate these features. This process generally takes place through bi-

narization of the grey scale image after smoothing through Gaussian kernels. These

binary images are mapped onto the original image to increase clarity and aid cluster-

ing. This is generally followed by identifying individual clusters and their centres to

calculate the dispersion, size and geometry [15].
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2.4 Reconstruction Methods

The ability to reconstruct the original microstructure from the features is a metric to

judge the quality of the features. Reconstruction methods traditionally involve a few

basic common steps:

1. Generate a sample reconstruction.

2. Calculate feature vector from generated sample reconstruction.

3. Compare sample feature vector with original image feature vector through a

cost function.

4. Exchange pixels in the sample such that the cost function is reduced, and report

the image with a sufficiently low cost.

Gradient based methods to calculate the pixel exchanges or modifications based on

cost function do not work with such problems well [11]. The most common method

followed in reconstruction is the Yeong and Torquato (YT) reconstruction method

[17]. The YT Reconstruction method is studied further.

2.4.1 The Yeong and Torquato (YT) reconstruction method

The primary reason the YT method is used is because of the presence of multiple

local minima in the cost function. The YT method, also commonly referred to as

simulated annealing solves these issues. The YT method can be understood in the

following steps [18]:

Let us define a cost function based on the original features f̂j(r) and the model

features fj(r) (from our generated model) as follows:

E =
m∑
j=1

l∑
r=0

|f̂j(r)− fj(r)|2 (2.6)

Here r represents the various length scales, while j iterates over the different

statistical parameters(eg. 2-point correlation, Linear path function etc.)

Then, the YT method works as follows:

1. Create an noisy sample image with the same volume fraction as the original

image
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2. Calculate fj(r) from sample image, calculate E based on this fj(r) and f̂j(r)

3. Swap pixels in image and recalculate E(call it Enew)

4. If Enew < E,accept the swap. If Enew > E, accept it with a probability of

exp(−Enew−E
T (k)

), where T (k) is defined as the Temperature at iteration k. T is

chosen such that the Bernoulli random variable of pixel exchange acceptance

has a probability of 0.5 at k=0(ie. first iteration) [17].

The 4th step is crucial to escape the local minima, and converge to the global min-

ima for the reconstruction. The YT method is computationally expensive, and other

methods like sequential quadratic programming methods [11] or Markov Random

Fields [19] have also been used for reconstruction.

2.5 Building structure-property relations

Once the characterisation is complete and the features hold sufficient information

about the microstructure, models can be built to map structure to properties. Since

the features are often large in number, it is often reduced in size by linear combination

of features through methods like Principal Component Analysis(PCA).

The process can be defined as follows:

1. Generate ensemble of microstructures and derive selected features from each

microstructure.

2. Represent condensed microstructure features as the components of the features

onto the principal axis.

It has been observed that the first 3 principal components can account for over 80%

of the variance in the features [20]. Once this reduced order feature set is available, it

can be used for purposes like clustering or classification of microstructures based on

distances between the components[6]. Clustering algorithms like K-means clustering

can be utilized for this clustering. Furthermore, components can also be used to

predict bulk properties like Young’s modulus by using linear regression [20]. Thus,

this reduced order representation can simplify and speed up training in the supervised

learning processes. The one drawback with PCA is that the principal components

are often large in size and do not signal any physical or intuitive meaning, making

them a mathematical operation.
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Process-structure relations can also be predicted on the basis of components of

feature vectors. For instance given a training set of temperature, aging time and

microstructure of a sample, a classification model has been shown to predict the

process parameters from a test set [21]. Thus, the flexibility of using feature vectors

with supervised learning techniques gives us many avenues to tackle in the Process-

Structure-Property domain.

Recent advances in Deep learning with the advent of Convolutional Neural Net-

works [22] and GPUs have accelerated the utilization of deep non-linear classifiers.

Deep learning has been utilized to find low dimensional features from image ensem-

bles to complement the 2-point correlations functions [23]. Deep neural networks have

also been used to relate microstructure to the susceptibility to damage initiation [24].

Deep learning could be tremendously useful in the modelling of structure property

relationships as well as generation microstructure ensembles. The availability of large

amounts of data is what makes neural networks particularly effective, and with the

increasing focus on material database creation, it is likely to be crucial.

2.6 Microstructure Evolution

Aside from deriving structure property relations and reconstruction of the microstruc-

ture, features derived can be used to study the evolution of the microstructure in time.

Tracking the features as a function of time gives us important information about the

evolution process like rate of phase separation, precipitate growth and agglomeration.

Furthermore, effect of process on structure can be quantified through these features

and thus process fine-tuning or adjusting can be improved.

Tracking the growth of a particular particle can explain particle kinetics, as ex-

plained in [25]. It is observed that precipitate growth is rapid in the initial stages

of growth due to the diffusion of solute from the matrix phase. It is in this region

that the phase separation is rapid, and the growth plateaus henceforth. That is,

at this point in time all neighbouring phase has been absorbed into the.precipitate.

Roosen et al.[25] also show that the precipitate approaches it’s Wolff shape as evo-

lution continues. Furthermore, the elongation and inclination of the precipitate has

been observed to increase in time using precipitate tracking techniques.

Multi-particle statistics have also been studied wherein the average size of the

precipitates is tracked. The steep ascent in the average size of the precipitates is

observed as expected. Shrinking of smaller particles leading to disappearance and

agglomeration can also be observed through precipitate tracking techniques [25].
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Aside from growth tracking of precipitates, interface velocity has also been of inter-

est specially in simulated microstructure. Since the microstructures are represented

as composition values in discrete spatial locations represented by pixels in an image,

the discontinuity and non-differentiable nature of images is a challenge in calculating

velocity. The sudden drop in composition in the phase interface rule out computa-

tional methods of calculating velocity since they involve numerically calculating the

gradients. Thus, to be able to find the gradient at values in the image, the image

needs to be smoothed by functions. The most common method of smoothing is by

using Gaussian kernels. Other methods are also suggested like using a smoothed sign

function [26], which deals with 2 specific problems of Gaussian kernels. Firstly, the

location shift of the interface due to Gaussian smoothing is corrected, and the cur-

vatures are more appropriately defined by using the smoothed sign function. Other

methods like diffusion smoothing are also applied as mechanisms to improve calcula-

tion of gradients .

Once the image is smooth, Level Set Methods can be applied to calculate param-

eters like velocity, inclination and curvature [27]. Level set methods are numerical

computations which can be used to calculate the movement of the interface, based on

gradients. For level set methods to be useful, the image needs to be transformed to

it’s Signed Distance Function(SDF), where locations inside the interface have a value

> 1, outside < 1 and the interface needs to have a value of 0. Level Set methods can

also be easily extended to calculate 3D interface properties [26] like mean curvature,

Gaussian curvature and normal velocity.

Applications of particle tracking are diverse, and it is a commonly studied phe-

nomenon in fields like biology and earth science. Applications in material sciences

can be seen in study of sintering using phase transformation [28] and in the modelling

of battery separators [29].
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Chapter 3

Methodology and Formulation

This chapter broadly has 3 sections. We first explain our data and how the effective

strain response for our microstructures is calculated computationally; then describe

our process to extract the elastic modulus from the loading conditions, and finally

formalize our characterisation methods to describe microstructures.

3.1 Image Data Description and Pre-processing

3.1.1 Data Description

The data generated is in the form of .dat files, with each .dat file representing one

microstructural image. Each pixel in the image represents the composition at a spatial

location, ie. the pixel values ranged between 0 and 1. The pixels with values >= 0.5

are considered as precipitates in our analysis. We analyse images from three sets of

Cahn-Hilliard isotropic, cubic and hexagonal microstructures, with the composition

for the minor component (precipitate) set at 0.3, 0.4 and 0.5 for each respectively.

Furthermore, stress along different directions was applied to them to record their

elastic behaviour.

3.1.2 Data Pre-processing

Statistical analysis of shape, size and distribution often requires the image pixel values

to be more differential for gradient calculations, and binary for image shape and size

quantification. Thus these data pre-processing steps are essential to improve precision

of the algorithms henceforth mentioned.

The images are first made continuous by convolution of the image with a 5 ∗ 5
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Gaussian filter to remove shape discontinuities, and make the gradient(1st derivative)

smooth. After smoothing, the microstructure was binarized by replacing pixel values

>= 0.5 by 1 and < 0.5 by 0. This binary microstructure is henceforth used as the

image for study. Figure 3.1 shows the composition profiles of the images before and

post binarization.

(a) Original Microstructure Image (b) Processed(Binary) image

Figure 3.1: Visualizing Composition Profile: The Composition profile along a line

visualized post processing.

3.2 Calculating homogenized strains

The raw composition microstructural data was used to record the response of the

microstructure to applied stress. Let us consider a microstructure with a local com-

position c(r) in a domain of Ω. The eigen strain is defined as the misfit strain due to

the difference in lattice parameter, and is a function of composition defined as follows

in our simulation [8].

ε0
ij(c) = β(c)εT δij (3.1)

Here β(c) is a chosen function of composition,δij the Kronecker delta function, and

εT the strength of our eigen-strain. For our strain calculations, we assume εT to be 0

to remove the effect of eigen-strains from our strain calculation. We will include the

term for eigen-strain calculation(which amounts to 0 in our simulation) henceforward

to ensure continuity in the analytical expressions.

The total local strain as a function of displacement can be expressed as a 2nd rank

tensor as follows:

εij =
1

2

{
∂ui
∂rj

+
∂uj
∂ri

}
(3.2)
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Since our microstructures are diffused interfaces of matrix and precipitate, it be-

comes imperative to define the elastic modulus along the interface. Given the elastic

modulus of the precipitate as Cp
ijkl and matrix as Cm

ijkl, we define the effective elastic

modulus as a function of composition as follows.

Cijkl(c) = Ceff
ijkl + α(c)∆Cijkl (3.3)

∆Cijkl = Cp
ijkl − C

m
ijkl (3.4)

Here, Ceff
ijkl is defined as the volumetric weighted mean of the matrix and precipi-

tate.

Based on Hooke’s law the total elastic stress (in our case the total stress as well

since we exclude eigen-strains) will correspond to :

σel
ij = Cijklε

el
ij (3.5)

If we represent the periodic strain by ε∗, the net strain thus becomes

εij = Eij + ε∗ij (3.6)

Combining the above 2 equations, and since divergence of stress at every point is

0 according to the equation of mechanical equilibrium, we get

∂

∂rj

{
Cijkl(Ekl + ε∗kl − ε0

kl)
}

= 0 (3.7)

The equation above is constrained by the effective strain and compliance matrix

through

Eij = Sijkl(σ
A
kl + 〈{σ0

kl}〉 − 〈{σ∗kl}〉) (3.8)

where σA
kl is the applied stress on the system, and Sijkl is 〈{Cijkl}〉−1.

Substituting for the values of the periodic displacement u∗l (r) for the periodic

strain, the final equation of mechanical equilibrium thus becomes

∂

∂rj

{
[Ceff

ijkl + α(c)∆Cijkl]

(
Ekl +

∂u∗l (r)

∂rk
− εT δklβ(c)

)}
= 0 (3.9)

[
Ceff

ijkl

∂2

∂rj∂rk
+ ∆Cijkl

∂

∂rj

(
α(c)

∂

∂rk

)]
u∗l (r) = Ceff

ijklε
T δkl

∂β(c)

∂rj
−∆CijklEkl

∂α(c)

∂rj

+∆Cijklε
T δkl

∂α(c)β(c)

∂rj
(3.10)
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This equation can be solved by using the Fast Fourier Transform Technique with

the following iterative procedure.

To get an initial approximation of the periodic displacement, let us consider

∆Cijkl = 0, which gives us the Zeroth order displacement as follows

Ceff
ijkl

∂2u∗l (r)

∂rj∂rk
= Ceff

ijklε
T δkl

∂β(c)

∂rj
(3.11)

Taking σT
ij = Ceff

ijklε
T δkl

Ceff
ijkl

∂2u∗l (r)

∂rj∂rk
= σT

ij

∂β(c)

∂rj
(3.12)

Taking the following equation in Fourier space gives us (u∗l )
0
g = −JGilσ

T
ijgjβ(c)g,

where the superscript on u∗k as 0 implies the zeroth order approximation, with G−1
il

defined as Cijklgjgk. We use this initial approximation as the starting point for our

calculations. The nth order approximation from the n− 1th is similarly calculated in

[8] and [9] as the following

{(u∗l )n}g = −JGilΛ
n−1
ij gj (3.13)

where

Λn−1
ij = σT

ij {β(c)}g −∆CijmnE
n−1
mn {α(c)}g + ∆Cijmnε

T δmn {α[c(r)]β[c(r)]}g

−∆Cijmn

{
α[c(r)]

∂(u∗m)n−1(r)

∂rn

}
g

(3.14)

Using (3.8) and (3.13) in an iterative manner to estimate the value of Ekl and

the displacements upto an error, we can determine the effective strain in a periodic

2-dimensional microstructure under an applied stress.

3.3 Calculation of elastic constants

We have thus far established a method to calculate the effective strain response of

a binary periodic microstructure on an applied stress. We now use these loading

conditions and effective strain pairs to estimate the effective elastic modulus(Cijkl) of

these microstructure images.

The elastic modulus is a 4th rank tensor, which relates the stress and strain tensors

through Hooke’s law as

σij = Cijklεkl (3.15)
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It is more common to represent this 4th rank tensor in the Voigt notation, which

utilizes the symmetry in the crystal lattices to express it as a matrix. The Voigt

notation for 3D lattices is represented as follows:

Cij =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


(3.16)

Simplifying this further for 2-dimensional microstructures with tetragonal sym-

metry would give us the simplified stiffness matrix as follows

Cij =

C11 C12 0

C12 C22 0

0 0 C44

 (3.17)

We use this stiffness matrix as the basis to estimate the values of C11, C22, C12 and

C44. This approximation simplifies and reduces the number of equations and loading

conditions needed to solve for Cijkl. The Hooke’s law equations now simplify to the

following:

σ11 = C11ε11 + C12ε22

σ22 = C12ε11 + C22ε22

σ12 = 2C44ε12

By selecting our loading conditions (ie. selecting σ11, σ22 and σ12), we calculate ε11,

ε22 and ε12 and obtain 3 constituent equations. Notice that C44 operates independent

of the the uniaxial stresses and strains, and thus can be obtained by a pure shear

loading condition.

Estimating the values of C11 and C12 is equivalent to calculating the slopes of

the best fit plane which fits the coordinates (ε11,ε22,σ11) for different loading condi-

tions. Similarly, estimating the values of C12 and C22 is equivalent to calculating the

slopes of the best fit plane which fits the coordinates (ε11,ε22,σ22) for different loading

conditions.

Since there exist deviations from ideal Hooke’s law or elastic behaviour due to our

microstructure being a composite and the numerical disturbances in the calculations,

we choose a best fit plane on multiple loading conditions as a better and more stable

approximation of Cij over a single or 2 loading conditions.
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Thus, to find the best fit plane, we linearly regress from (ε11,ε22) to σ11 and report

the coefficients of regression as the values of C11 and C12. Similarly, we regress from

(ε11,ε22) to σ22 to estimate C12 and C22. The equivalence in the value of C12 can be

used as a check to verify the calculations of the stiffness matrix.

Thus, by using multiple loading conditions we can estimate the stiffness matrix

of our microstructure. In perfectly cubic microstructure, C11 and C22 are identical,

which was used as the benchmark for our calculations.

The flowchart below demonstrates the steps in the estimation of the stiffness

matrix Cij for 2D 2-phase binary microstructures.

Calculate strains(ε11, ε22) corresponding to multiple loading condition triplets(σ11, σ22, σ12)

Store ε11, ε22 and σ11 as features and output for regression respectively

Linearly regress from (ε11, ε22) to σ11 ; get coefficients of linear regression as C11 and C12

Repeat process for ε11, ε22 and σ22

Calculate C44 from a pure shear loading condition

3.4 2 Point Statistics

3.4.1 Formulation

Quantifying the spatial distribution of states in a microstructure can help us cap-

ture the density of precipitate and define how isotropic or anisotropic a particular

microstructure is. We calculate these distributions in terms of the microstructure

probability function mn
s , defined as the probability of finding the local state n at the

spatial location s. In our binary microstructures, the mn
s values are either 1 or 0, ie.

a local state is either present or not present at a particular spatial location.
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We extend this formulation to include 2 local states, and define fn1n2
t as the

probability of finding local state n1 at a spatial location while simultaneously finding

n2 at a spatial location t vector away from the original spatial location. This value

can be calculated as follows [2]:

fn1n2
t =

1

S

S−1∑
s=0

mn1
s m

n2
s+t (3.18)

We solve the above sum by taking the LHS and the RHS into the Fourier space

and apply the Convolution theorem to the RHS expression. This gives us the Fourier

transform of fn1n2
t as:

F n1n2
k = F(

S−1∑
s=0

mn1
s m

n2
s+t) =

1

S

S−1∑
s=0

mn1
s e

−2πisk
S

S−1∑
z=0

mn2
z e

2πizk
S (3.19)

We then take the inverse Fourier transform of the above expression to calculate

the 2 point correlations.

Here, if n1 and n2 are the same local state in our binary microstructures(1,1 or

0,0), the fn1n2
t values would represent the auto-correlations of the local states 1

and 0 respectively. Alternatively, if n1 and n2 are the different local states, ie. (1,0

or 0,1), the fn1n2
t values would correspond to the cross-correlation of the 2 local

states.

3.4.2 Algorithm

We utilize the python library numpy to calculate the auto-correlation and cross-

correlation values, since it supports swift calculation of Fourier and inverse-Fourier

transform. The microstructure probability function mni
s is calculated for each of the

ith local state, and stored as numpy arrays mi(m1, m2 etc.). The flowchart below

summarizes the process followed in calculating the correlations.
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Calculate m1 and m2

Fourier transform of m1 and m2(M1 and M2)

Inverse Fourier Transform of M1*conjugate(M2)/(No of pixels)

Absolute value, followed by reshaping(fftshift) to image size

3.4.3 Visualization

The probability correlation values are visualized by representing the probability values

as colors of varying intensities, centred at the origin of the image. Since we take the

Fourier and Inverse Fourier transform of the image, we use the fftshift command so

that all the zero frequency values are closer to the centre. Since we are visualizing

vectors at all directions, looking at them with the zero vector at the centre of the image

aids comprehension. Thus, they are centered at the origin. Once the correlations

are captured, we can calculate the radial probability distribution, as well as the

probability distributions at various angular sectors. These visualizations are presented

in the figures given below:
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(a) Raw microstructure Image (b) Cross Correlation

(c) 1-1 Auto-Correlation (d) 0-0 Auto-Correlation

Figure 3.2: Visualizing Correlations

These visualizations and the probabilities were bench-marked against the PYMKS

python library [30], where they gave identical results.

3.5 Level Set Methods and Velocity Formulation

Calculating velocity of interface is important since it gives us a good metric to judge

pace of precipitate growth, and understand the inherent qualitative properties of

the 2 phases. Furthermore, the statistical quantities we calculate can be validated

further by investigating the actual velocity of the phase boundaries. We have used

the Level Set Method [27] to quantify the orthogonal velocity at the interface of the 2

phases. Velocity studies are important because they let us visualize how a particular

precipitate is growing, identify regions of rapid growth and distinguish between 2

similar looking microstructures.
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3.5.1 Level Set Methods: Formulation

The problem statement can broadly be broken down into 3 parts, locating the inter-

face, finding the normal to the interface to suggest direction of movement and finding

the magnitude of the interface velocity. We study the 3 parts separately:

3.5.1.1 Contouring or Interface Location

We define the interface pixels as the pixels which have at least one bordering(vertical,

horizontal or diagonal) precipitate pixel. Thus for a single pixel precipitate, we would

have 8 bordering interface pixels. The presence of diagonally neighbouring points do

not harm our calculations, since we smooth the binary image, and the gradients

formed post smoothing are nearly equal in orthogonal and diagonal neighbours. The

figure below illustrates the contours found for a hexagonal microstructure. Because

the contours are fine, the image has to be zoomed in to notice the contours as computer

rendering makes the faint lines more transparent.

Figure 3.3: Contours on the microstructure

3.5.1.2 Interface direction and velocity

The interfacial velocity and direction of a growing or shrinking precipitate can be cap-

tured by applying level set methods. This involves first converting the binary image

into a continuous signed difference function(Φ). We do this by first smoothing the
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image by the convolution of a 5x5 Gaussian kernel on the image, and then subtracting

0.5 to make the interface pixels close to 0 to create the signed difference function(Φ).

Once we have obtained the Signed Difference Function(Φ), we can apply Level Set

Algorithms to find the interface normal vector and the velocity. The normal vector
~N and the velocity magnitude |~V |.

~N = − ∇Φ

|∇Φ|
(3.20)

|~V | =
dΦ
dt

|∇Φ|
(3.21)

Here, the sign of dΦ
dt

decides whether an interface is expanding or contracting.

Furthermore, dΦ
dt

was calculated by interpolating a line through 4 points, to make the

derivatives more representative of the actual curve.

3.5.2 Algorithm

We followed the following process while calculating the interface velocities of the

precipitates in our microstructures.

Find interface pixels

Calculate Signed Difference Function Φ

Calculate interface normal vector( ~N) and velocity magnitude(|~V |)

Multiply ~N and |~V | to get velocity vector

Plot quiver plot of velocity vectors by selectively selecting points
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3.5.3 Visualization

Since we are working with large size images, plotting the quiver plot by considering

each interface pixel would inundate the figure with arrows. Furthermore, the nearby

boundary pixels do not show significant deviation in velocity vectors. Thus we plot

only every 8th velocity vector for better visualization.

The algorithm is tested on a continuously growing perfectly spherical microstruc-

ture, whose growth rate is calculated geometrically and validated.

Figure 3.4: Velocity visualized on a quiver plot

3.6 Hoshen-Kopelman Algorithm and Application

3.6.1 Formulation: General Hoshen-Kopelman

The general Hoshen-Kopelman [31] is one of the most efficient algorithms for cluster

counting and labelling since it takes only one pass through the image to label the

clusters in the image. We take a sample binary microstructure image and apply the

regular Hoshen-Kopelman algorithm, which does not account for periodic boundary

conditions to test our algorithm for Non-periodic images. The general algorithm

without Periodic Boundary Conditions(PBC) is implemented as follows [32], without

considering the boundary pixels:
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Algorithm 1 Hoshen Kopleman algorithm for Non-PBC

Result: A matrix of labels

maxlabel=0 for x in 0:no of columns and y in 0:no of rows do

if occupied[x,y] then
left = occupied[x-1,y] above = occupied[x,y-1]

if left != 0 and above == 0 then
label[x,y] = find(left)

end

if left == 0 and above != 0 then
label[x,y] = find(above)

end

if left == 1 and above == 1 then
union(left,above), label[x,y] = find(left)

end

end

end

Here, the union and find methods are derived from the common union-find algo-

rithm. The union find algorithm is one of the most intensively studied and analyzed

algorithms in the world, and the Weighted Union Find with Path Compression tech-

nique is implemented to optimize the efficiency of the algorithm. The technique is

useful as it can shorten the trees which are formed in the union find algorithms and

also account for complexity in the nodes which are formed.

The Hoshen-Kopelman algorithm works well for non-periodic boundary condi-

tions, but requires modifications for periodic boundary conditions. The specific prob-

lem with periodic boundary conditions is that the edge pixels could belong to the

same cluster, and thus the above algorithm fails.

3.6.2 Formulation : Hoshen Kopleman for PBC

To account for periodic boundary conditions, we follow the original Hoshen-Kopelman

algorithm to completion. Post completion, we run the algorithm again only on the

edge labels/pixels with two key changes:

1. We do not allot a new label value to a cluster encountered for the first time,

instead we let it retain the earlier label

2. We introduce the periodic boundary condition to the 1st row and column of the
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image by defining it’s left and above boundary pixel by adding a imaginary row

and column to the left and top of the image.

The algorithm for periodic boundary conditions is as follows:

Algorithm 2 Hoshen Kopleman algorithm for PBC

Result: A matrix of labels

maxlabel=0 for x in 0:no of columns and y in 0:no of rows do

if occupied[x,y] then
left = occupied[x-1,y], above = occupied[x,y-1]

if left != 0 and above == 0 then
label[x,y] = find(left)

end

if left == 0 and above != 0 then
label[x,y] = find(above)

end

if left == 1 and above == 1 then
union(left,above), label[x,y] = find(left)

end

if left == 0 and above == 0 then
maxlabel=maxlabel+1, label[x,y] = maxlabel

end

end

end

for x in 0:no of columns and y in 0:n0 of rows do

if occupied[x,y] and edge[x,y] then
left = occupied[x-1,y] (PBC), above = occupied[x,y-1] (PBC)

if left != 0 and above == 0 then
label[x,y] = find(left)

end

if left == 0 and above != 0 then
label[x,y] = find(above)

end

if left == 1 and above == 1 then
union(left,above), label[x,y] = find(left)

end

end

end
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3.6.3 Visualization

We visualize the cluster labelled microstructure by color coding each precipitate based

on its number. We can also visualize a single precipitate by projecting only one label.

In Figure 3.5, each precipitate is uniquely represented by a colour, whose numerical

value can be found by using the colour-bar. The colour-bar also gives us information

like the total number of precipitates, which in Figure 3.5 are around 225. This figure

will henceforth be called as the Hoshen-Kopelman Labelled Microstructure(HSLM)

image of a microstructure.

Figure 3.5: Cluster counting and labelling(HKLM Image)

3.7 Shape/size quantification and Precipitate Track-

ing

3.7.1 Shape/size quantification

Identifying features of precipitates like size, inclination etc can help us study precip-

itate growth and evolution in detail. Once we have identified a precipitate(by using

the Hoshen-Kopelman algorithm), we can derive many features of the precipitate by

analyzing the binary microstructure of the precipitate.

The two main proponents which are required to track and study a precipitate

are the centre of gravity and the 2nd order moment of the binary shape. The centre

of gravity is associated with the spatial position of the precipitate and the moment
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is associated with the shape/inclination of the image. What makes it challenging

is to extend the usually simplistic analysis on generic binary images to images with

periodic boundary conditions. We will investigate the 2 problems separately in this

section.

3.7.1.1 Centre of gravity

Centre of gravity for generic non-periodic binary images is directly obtained by orthog-

onal counting of precipitate pixels in both directions, and then finding the weighted

mean of the resulting array. Since we are working with periodic boundary conditions,

we first move from a linear array to an angular array, and do the weighted means in

the rotational space [33]. The physical equivalent of our approach would be folding

the image to calculate the COG. The algorithm for one direction, say x, is described

as follows. Given a directional array xi going from 1 to X and a weight distribution

mi which adds up to M :

θi =
2πxi
X

αi = cos θi

βi = sin θi

ᾱi =
1

M

∑
i

miαi

β̄i =
1

M

∑
i

miβi

θ̄ = arctan(−β̄i, ᾱi) + π

Xcog =
Xθ̄

2π
(3.22)

Thus we can find the Centre of gravity along the two orthogonal directions sepa-

rately to get the final COG of a binary precipitate.
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3.7.1.2 Moments

Once we have calculated the values of Xcog and Ycog, we can find the inclination, major

and minor axis of a binary precipitate by using the values of second order moments.

The pth and qth order moment of a binary image is calculated as follows:

Mpq =
∑

i,j∈Obj

ipjq (3.23)

We can thus calculate M20, M02, M11 and M00 from the above equation. We then

calculate the following matrix and find the Eigen vectors and Eigen-values to get the

inclination and major/minor axis.

µ20 =
M20

M00

− x̄2, µ02 =
M02

M00

− ȳ2, µ11 =
M11

M00

− x̄ȳ

cov =

[
µ20 µ11

µ11 µ02

]
(3.24)

We can find the angle of inclination and major/minor axis by finding the eigen-

vectors of the above matrix.

3.7.2 Precipitate tracking

Since our microstructures are evolving with time, it becomes imperative to track

a particular precipitate and study it’s growth. The Hoshen-Kopelman algorithm

does an excellent job at counting the clusters and labelling them from 1 to n. The

major problem faced in tracking is identifying which precipitate we are currently

tracking, as the Hoshen-Kopelman labels will change for each precipitate in each

time frame of image acquisition. That is, the Hoshen-Kopelman Algorithm can label

the precipitates, but cannot tell us that 2 different labels corresponding to 2 different

images across time are actually the same precipitate, which has grown/shrunk in the

evolution process.

The problem statement thus obtained is, given a Hoshen-Kopelman Labelled

Microstructure (HSLM) image and the label of the precipitate being tracked, we

need to find out the label for the same corresponding precipitate in the next/new

HSLM image. We suggest 2 approaches to solve this problem:
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3.7.2.1 Centre of Gravity(COG) based tracking

This approach relies on the fact that in gradually growing microstructure, the centre of

gravity corresponding to a precipitate will lie on the same precipitate in the next time

step of image acquisition. The flowchart below explains the steps in the algorithm.

Binary Microstructure Image (nthimage)

Hoshen Kopleman Labelled Microstructure, Chosen Precipitate Label

Centre of gravity of precipitate

Label corresponding to COG in new HKLM ((n+ 1)thimage)

Precipitate in new microstructure ((n+ 1)thimage)

Centre of mass based tracking techniques are most commonly used in image pro-

cessing, but rely on the assumption that the COG will lie inside the precipitate. For

concave microstructures this often fails. We thus suggest a better way to tackle in

problem.

3.7.2.2 Probabilistic tracking

The primary issue with the COG based algorithms is the fact that as shape of pre-

cipitates move away from convexity, the Centre of Mass may or may not lie on the

precipitate. Thus point based methods of tracking fail as the microstructure shapes

grow more complex eg. Spinodal microstructure. Thus, to solve this problem, we take

a probabilistic approach of identifying the most likely precipitate in the (n+ 1)th im-

age from the chosen precipitate in the nth image. Since we know that only a single

precipitate in the (n+ 1)th image corresponds to the precipitate in the nth image, we

simply superimpose the precipitate of study onto the (n+ 1)th image and find the

cluster with the most number of pixels matching. That is, we identify which cluster

of precipitates is most likely to be the precipitate we are studying.
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This method can be formalized by the following process. Given spatial location s,

Let us define a unique function for each image called Hn(s), which gives the

Hoshen-Kopelman label for each spatial location of s for image number n.

Let Kn be the Hoshen Kopelman label associated with the precipitate in image n

for all values of s which lie inside the precipitate.

Our goal is to find Kn+1 for the (n+ 1)th image such that for all values for s with

Hn(s) = Kn, probability of Hn+1(s) = Kn+1 is maximized.

maxP (Kn+1|Hn(s) = Kn) (3.25)

The flowchart defines the steps taken:

Binary Microstructure Image (nthimage)

Hoshen Kopleman Labelled Microstructure, Chosen Precipitate Label

Binary mask previous precipitate on new HKLM((n+ 1)thimage)

Label corresponding to most overlap in new HKLM ((n+ 1)thimage)

Precipitate in new microstructure ((n+ 1)thimage)

Once we have labelled the precipitate we are studying, we can calculate many

quantitative parameters representing the precipitate distribution and shape/size. We

list down parameters and features we can calculate:

1. Centre of gravity and it’s movement

2. Precipitate size distribution

3. Interface velocity
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4. Precipitate area change(growth/shrinking)

5. Agglomeration of precipitates

6. Sphericity and inclination

7. Major and minor axis

8. 2 point statistics of microstructure

3.7.3 Visualization

(a) COG suited precipitate (b) Probabilistic model suited precipitate

Figure 3.6: Visualizing Precipitates

3.8 Convexity measures

3.8.1 Definition

We define Convexity in terms of a number called Convexity number, a probabilistic

measure of how convex a binary image is. The convexity number should have the

following features for it to be a good indicator of probability [34]:

1. A number lies between (0,1], with a perfectly convex shape having a value of 1

2. The number increases as the convexity of the image increases
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A shape is perfectly convex if given any 2 points taken on the shape, the line

joining the 2 points entirely lies in the shape. Analogous to this definition, we define

our convexity to measure the likeliness of this line joining 2 points on the precipitate

to lie on the precipitate. The convexity measure we calculate is the following:

Given 2 points on the precipitate, what is the probability that the midpoint of these

2 points lies on the precipitate as well.

We simplify to account only for the midpoint since the midpoint lying on the line

is often a good indicator of other points on the line, and just calculating the midpoint

saves us the computation time of calculating all the points in the line. The measure

can thus be formally written as the following:

For points pi in the binary image space I and mij being the midpoints of 2 points

pi and pj , we calculate:

Pconvexity = P (mij = 1|pi = 1 ∩ pj = 1) (3.26)

This convexity measure is extremely difficult to compute, and theorems like the

Convolution theorem we applied while calculating auto-correlations fail because of

the presence of the extra midpoint term in the expression. We thus calculate this

quantity by using Monte Carlo techniques.

(a) Concave Precipitate (b) Convex Precipitate

Figure 3.7: Visualizing Concave and Convex shapes
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3.8.2 Monte Carlo method

Since calculating the exact probability measure is too computationally expensive,

we use a Monte Carlo method to sample points from the image and calculate the

probability measure. We run the simulation till the probability value converges, which

we notice generally happens after 30,000 sampled points for 2000*2000 resolution

images.

The formulation of the method is simple. We randomly select 2 points on the

image which lie on the object. We then find the point in the middle of the line

joining these 2 points, and check whether this point also lies in the object. The net

probability measure we calculate then becomes:

Pconvexity =
No of midpoints on object

Number of pairs of points chosen on object
(3.27)

3.8.3 Testing convexity on precipitate growth

We track 2 precipitates in the spinodal regime who can be observed to be moving

towards convexity and test if our convexity measure in increasing in time and finally

constant at 1 when the precipitate is perfectly convex. The 2 precipitates perfectly

followed our hypothesis, which can be seen in the figures given below.
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Figure 3.8: Visualizing Convexity Number with Precipitate Growth

3.8.4 Convexity for complete microstructural images

Since up until now we have talked only about convexity of individual precipitates, it

only makes sense to define convexity in a form to quantify complete microstructural

evolution with multiple precipitates. The traditional form of convexity that we define

in the earlier section fails when we apply it to more than 1 precipitate in an image,

and thus we require a new transformed form of convexity.

We call this form of convexity Short Range Averaged Convexity. Rather

than do the Monte Carlo random point sampling on the entire image, we break

the image down into N∗N smaller images, calculate the convexity for each of these

smaller images(called Short Range Convexity), and report the average convexity of

these smaller bits. This convexity can be imagined as a measure to ascertain at what

length scale the microstructure is locally convex in. The flowchart describing the

steps followed is as follows:
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Load microstructure image

Divide image into N*N tiles (eg. 4*4)

Calculate the convexity of each tile(eg. 16 tiles)

Report mean of convexity from all tiles

The Short Range Average Convexity values of a developing microstructure showed

a steadily increasing value when using a N=4, ie. using 16 tiles. The microstructural

evolution and the convexity values are shown below. We can see the steady increase

in convexity values clearly with evolution, which verifies our model perfectly.

(a) time = t1 (b) time = t2 (c) time = t3

Figure 3.9: Convexity number change with Microstructure Evolution (t3 > t2 > t1)
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3.8.5 Calculating Short Range Averaged Convexity using dif-

ferent box sizes

Since our convexity measures for Short Range Averaged Convexity depends on the

number of bits we divide the image into, it becomes imperative to statistically describe

the significance of smaller or larger box sizes. Intuitively, smaller box sizes(breaking

image into more parts) should lead to higher convexity values for any microstructure,

since a microstructure generally tries to obtain perfect convexity along smaller regions

first, and then through agglomeration or growth, becomes larger and convex on bigger

length scales.

We do this experiment on Hexagonal microstructures of 3 compositions, 0.3, 0.4

and 0.5, and vary the number of parts we break the image into in the increasing power

of 2. That is, we check the convexity values for 2x2, 4x4, 8x8 and 16x16 boxes. The

results from the experiment can be seen in the figures given below.

Figure 3.10: Convexity change with different image divisions

The plots above illustrate that the more divisions you make(and decrease the

individual box sizes), more rapid is the Short Range Averaged Convexity rise. Fur-

thermore, after certain time-steps of microstructural evolution, the higher-division

convexity’s converge to values close to one. This implies that microstructures de-

velop in a way such that the convexity values increase and asymptotically converge

to 1.
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Chapter 4

Results and Discussion

This chapter is divided into 5 parts for easier understanding.

In the first section (Section 4.1) we use some of the tools and measures discussed in

the previous chapter to analyse some sample microstructures and derive conclusions

based on these results. The inferences derived from this section will clarify how the

outputs from the algorithms in Chapter 3 need to be understood.

In the second section (Section 4.2), we compare the macroscopic properties of

the Isotropic, Cubic and Hexagonal microstructures across time, and identify key

distinguishing features between these microstructures. We use the conclusions drawn

from Section 4.1 as basis for out comparison.

In the third section (Section 4.3), we test methods of precipitate tracking to iden-

tify key events and track precipitate growth. This section is meant to give the reader

a sense of the wide range of evolutionary parameters that can be tracked by the

clustering and tracking algorithms presented in this report.

In Section 4.4, we show the calculations of elastic modulus from our microstruc-

tures and comment on their accuracy. We also show how this property evolves with

the microstructure evolution, and how it is influenced by composition and anisotropy.

Finally, Section 4.5 demonstrates how the properties calculated in Section 4.4 and

the features calculates in Sections 4.1, 4.2 and 4.3 can be correlated to get an effective

understanding of structure property relationships.
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4.1 Characterisation examples and use cases

4.1.1 Datasets used for comparison

The Cahn-Hilliard generated microstructures are of three types, the perfectly isotropic,

and ones with hexagonal and cubic anisotropy. Each of these were generated for

200,000 time-steps, and every 200th image was sampled out for analysis, ie. we had

1000 images to apply statistics to. Upon visual examination of these 1000 images,

and noting down the statistical changes observed between different times, we observed

that there was little significant change in statistical features between alternate images,

ie. images 200 time-steps apart. Thus, to save on computing time we sample only

every 30th image out of the 1000 images for feature extraction, which gives us enough

time-series information to draw conclusions from, since within each 30 continuous

images, the statistical difference is insignificant.

4.1.2 2-Point Correlations

The 2-Point correlations are calculated as explained in Chapter 3. We visualize the

precipitate cross-correlation and auto-correlation heat map, and also calculate these

metrics on a distance scale, ie. calculating the values on a radial scale by averaging the

probability along a thin circular ring. Furthermore, we extend this analysis to capture

angular features along particular angular sectors, to capture anisotropy. These 3 use

cases are presented in the subsections ahead.

4.1.2.1 Using 2-Point correlation to compare anisotropy

The auto-correlations represented as a probability heat-map is calculated for mi-

crostructures at different stages of their evolution. The points on the vector space(with

the centre of the image as the origin) with color higher up on the color-bar represent

higher probability of occurrence of the particular local state. For instance, at the

centre(vector (0,0)), the probability will always be exactly equal to the probability of

finding the local state(ie. 0.3 if we calculate auto-correlations for composition 0.3).

Furthermore, we can generally observe rings of higher and lower probability close to

the origin, which are good indicators of the periodicity in the microstructures.

For instance, in the below figures, you can observe the auto and cross correla-

tions calculated for the isotropic case of precipitate phase composition 0.5, which

demonstrate the properties mentioned in the previous paragraph. We can clearly

observe that the auto-correlations and cross-correlations for the isotropic microstruc-
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tures have no anisotropy, and are perfectly spherically contoured as shown below. The

high probability spherical rings are also perfectly visible around the centre, showing

the approximate judgement of precipitate sizes.

(a) Image, Isotropic C=0.5
(b) Auto-correlation (c) Cross-correlation

Figure 4.1: Visualizing Correlation for Isotropic Microstructures

For the hexagonal microstructure of composition of precipitate phase 0.5, visual-

izing the probability correlation heat-map gives expected results. For the hexagonal

case, we can clearly see the anisotropy in the precipitate distribution in the figures

below in the form of the hexagons of high and low probability around the centre,

which adds credence to our formulation.

(a) Image, Hexagonal C=0.5
(b) Auto-correlation (c) Cross-correlation

Figure 4.2: Visualizing Correlation for Hexagonal Microstructures

By using these correlation heatmaps, we can get a fair idea about the anisotropy

shape/directions, and also judge the particle sizes by looking at the sized of the rings

around the centre. Thus, these heatmaps capture important macroscopic features

from the binary microstructure images.
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4.1.2.2 Using 2-Point Radial Correlations to study microstructure evolu-

tion

Although the correlation heatmaps give us significant information about the anisotropy

and approximate sizes of the precipitates, these are not easily numerically quantifiable

through heatmaps. Thus, we plot the radial correlations(S2(r)) as a measure, derived

directly from the probability heatmaps above, which can quantify the understanding

of the particle sizes.

We calculate the radial auto-correlation as the auto-correlation taken and averaged

at a particular radial distance.

This is calculated by simply taking a correlation plot, and finding the average

probability at thin rings of radius r around the centre. This way, we can capture

more easily the particle distribution at a radial distance r from the origin. This plot

gives us important information about the probability distribution of precipitates, and

can help us identify the particle size and inter particle distance of a microstructure.

The x-coordinate represents the radial distance from the origin, while the y axis

represents the probability of finding the same local state(in our auto-correlations case

- the precipitate) at that radial distance. The first x-coordinate minima of the radial

auto-correlation curve corresponds to the precipitate size(ie. where the likelihood

of finding the precipitate is lowest), while the first maxima after the origin is an

indication of the inter-particle distance(ie. where the likelyhood of finding another

precipitate is highest again).

These 2 measures can be plotted across time to study precipitate size growth and

distribution in microstructural evolution. As we can observe in the figures below

for the Hexagonal Microstructures as an example, the plots are largely oscillatory,

implying subsequent higher and lower probability regions of finding precipitate in a

microstructure, which holds well with our microstructural image. Furthermore, as

we make this plot at increasing intervals of time, the curve moves towards the rights,

ie. the precipitate size and inter-particle distance both increase as the microstructure

evolves, which also holds true with our images.

Additionally, the difference in probability values of precipitates at different com-

positions in the Figure 4.4 clearly shows us how composition changes affect particle

sizes and distances. Here C03, C04 and C05 correspond to the compositions of 0.3,

0.4 and 0.5 respectively.
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Figure 4.3: Plotting Radial Auto Correlations

Figure 4.4: Plotting radial auto-correlations vs time
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The radial auto-correlation change with time gives us a good indication of pre-

cipitate growth as the we can clearly see the radial curve spread out/decrease in

frequency as the microstructure evolves.

4.1.2.3 Contrasting directions of anisotropy with correlations along di-

rections

In cases of anisotropy, it becomes imperative to establish precipitate growth in dif-

ferent directions, as a single radial correlation does not give us information about the

anisotropy in the system. This can be done simply by plotting the radial correlation

only between certain angles ie. sectors to compare the evolution along these angles.

That is, rather than calculating the mean probability over a ring around the origin,

we calculate the mean along an angular arc on the ring.

This can be done in 2 ways, comparing growth/size along a particular direction to

the average growth/size, or comparing distributions between directions of anisotropy.

This itself becomes a test for anisotropy, as a perfectly isotropic microstructure will

show identical radial behavior along all angles and directions for small radii in the

neighbourhood.

(a) Comparing radial and angular correlation

as an anisotropy test (b) Comparing 2 different angles of growth

Figure 4.5: Comparing directional growth

We can also compare angles of growth to understand in which directions the

anisotropy is prominent. We compare 2 sectors of 60 degrees each in the curves

above.
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4.1.3 Using Clustering algorithms for precipitate counting

and size estimation

(a) Plotting number of particles (b) Close up view of particle count

Figure 4.6: Particle Counting with time

Since we have implemented the Hoshen-Kopelman algorithms to segment individual

clusters of precipitates, we can also easily capture the macroscopic properties like the

number of precipitates, average precipitate size and standard deviation across both

composition and time. These features are more versatile in the initial time periods

of microstructural development, and asymptotically converge as the microstructure

grows to larger precipitates.

For instance, the figure below shows the mean, standard deviation and precipitate

count comparison of Hexagonal microstructures of precipitate phase composition 0.3

and 0.4 across time. We also plot the total precipitate area in Figure 4.28, which is an

indicator of how quickly complete phase separation takes place form the precipitate

to the matrix phase(as indicated by the asymptote in the figure).
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(a) Mean (b) Std. Deviation

(c) Total Precipitate Area

Figure 4.7: Precipitate Size statistics

Furthermore, we can also try and fit the precipitate areas into an area and log

area distribution to better understand the precipitate size distribution by plotting

histograms. The histograms are only useful with large number of precipitates in the

image, and show prominence within the initial stages of the microstructure develop-

ment. The typical histograms of really early stage microstructures are shown in the

figures given below.
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(a) Precipitate Size Distribution

4.2 Comparison between Isotropic, Hexagonal and

Cubic Microstructures

4.2.1 Auto-Correlation Heat-maps

The Auto-Correlation heatmaps of the three microstructure types can give us clear

information about the type of anisotropy and the precipitate size. The figure below

illustrates this behaviour for all three types of microstructure(Isotropic, Hexagonal

and Cubic). The image and the auto-correlation corresponding to that image are

shown below.
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(a) Isotropic Image (b) Isotropic Auto-correlation

(c) Hexagonal Image (d) Hexagonal Auto-correlation

(e) Cubic Image (f) Cubic Auto-correlation

Figure 4.9: Comparison of Auto-correlation Heatmaps

The striking feature which is easily noticeable is the probability distribution along

the shapes of the original image, that is, given the auto-correlations of an image, we
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can easily identify the underlying shape anisotropy in the microstructure. The plots

below are a zoomed in and high contrast image of Fig 4.9.

Figure 4.10: Left to Right: Increasing Composition, Top to bottom: Isotropic, Hexag-

onal and Cubic

We can also compare auto-correlations at different time of evolution. The figures

below Fig 4.10 show how the auto-correlations vary for hexagonal microstructures of

precipitate phase composition 0.4 during evolution.
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(a) t=100 (b) t=500 (c) t=1000

Figure 4.11: Auto-correlation variation with time for Hexagonal Microstructure with

C=0.4

It is fairly visible in Fig 4.11 that as time of evolution increases, the size of the

precipitates as indicated by the size of the dark ’high probability’ region also increases.

The next Section 4.2.2 discusses the quantification of this region.

4.2.2 Radial Correlations

We calculate the Radial Auto-Correlations (as explained in Section 4.1.2.2 ) for the

three microstructures, which give us easily quantifiable information about the pre-

cipitate sizes and distribution. We make the plots to compare how the radial auto-

correlation changes based on composition and anisotropy.

The plots below compare the radial auto-correlations for the 3 types of microstruc-

ture(at a composition of 0.4) at 4 different time-steps, initial stage of development,

middle phases and towards the end. We can see quite clearly that the radial distri-

bution of different anisotropic microstructures vary significantly in the initial stages,

where there are more precipitates, and gradually becomes similar as the microstruc-

tures evolve.
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(a) Start of evolution (b) Middle Stage 1

(c) Middle Stage 2 (d) Towards end of evolution

Figure 4.12: Comparison of Radial Auto-correlations with time between Isotropic,

Hexagonal and Cubic for composition of 0.4

Furthermore, if we look at the 3 microstructure types separately, and plot the

radial auto-correlations at different compositions, we can see how increasing or de-

creasing the composition affects the probability distribution of precipitates. The

figure below illustrates that as the composition increases, the probability of finding

the precipitates in space increases, while the particle size tends to also increase (as

demonstrated by the shift of the first minima towards the right). This expected

behaviour was followed in the Isotropic and Cubic case, while the Hexagonal mi-

crostructures showed some deviation from this behaviour, ie. the average precipitate

size at similar time does not increase with increasing composition.
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(a) Isotropic (b) Hexagonal

(c) Cubic

Figure 4.13: Comparison of Radial Auto-correlations between Isotropic, Hexagonal

and Cubic with composition

Quite clearly, the Cubic and Isotropic microstructures show the expected be-

haviour between the compositions of 0.3 and 0.4, that is the probability increases

and the first minima(indicator of precipitate size) moves to the right. The hexagonal

microstructure shows the probability increase, but the minima at composition 0.4 is

to the left of the minima at composition 0.3. This would indicate that the average

precipitate size in the composition 0.4 is smaller than the size at composition 0.3.

Thus, to study this more closely, we take the Hexagonal microstructures at further

finer compositions of 0.3, 0.35, 0.4, 0.41, 0.42, 0.43, 0.45 and 0.5 to see at what

composition ranges this behaviour is present. The plots below show the same.
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(a) Initial Stage (b) Middle Stage

(c) Final Stages

Figure 4.14: Comparison of Radial Auto-correlations of Hexagonal Microstructure

with finer compositions

It’s clear that the average precipitate size seems to be decreasing from Composition

0.3 to 0.42, and after 0.42 till the composition of 0.5, the estimate of precipitate size

shows increments. Furthermore, if we look closely at the graph at the x coordinate

of the first maxima after origin (an indicator of inter-precipitate distance), the inter-

precipitate distance seems to have reduced too, which is also counter intuitive since

we expect the inter-precipitate distance to increase as precipitates grow. One idea

which could explain both these peculiar phenomena is that in the hexagonal case,

due to the increase in the number of precipitates, the number of larger precipitates

reduce to accommodate many smaller precipitates. That would explain the decrease

in the precipitate size and the inter-precipitate distance. We will study and test this

hypothesis in the next section(Section 4.2.3).

4.2.3 Precipitate Size Statistics

Let us first look at the mean particle area/size for the 3 Microstructure types(Isotropic,

Hexagonal and Cubic) along different compositions. The plots below demonstrate this
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statistical parameter at 2 different compositions of 0.3 and 0.4.

(a) Mean Precipitate Size with time

Figure 4.15: Comparison of Mean Precipitate Size of composition 0.3 and 0.4

What is really interesting in the plots above is that the mean precipitate size

increases with composition for both cubic and isotropic microstructures, but not for

hexagonal microstructures. The mean precipitate size remains nearly equal for both

compositions(0.3 and 0.4) in the case of hexagonal microstructures.

So we can conclude that the mean precipitate size does not increase in the hexag-

onal case significantly between the composition ranges 0.3 to 0.45, but it does in the

Isotropic and the Cubic case. This is primarily due to the increase in the number

of smaller and similarly sized precipitates. Possible explanations of this phenom-

ena could be due to the constraint in the directions of agglomeration of hexagonal

microstructures due to their microscopy.

Finally, another important characteristic to study is the total separation of the

precipitate generating phase, that is, to find whether the components are fully sep-

arated or not. This can be easily seen when we plot the total area of precipitates,

and upon complete separability, this area should be almost constant, or asymptot-

ically constant. Plotting this for the 3 microstructure types gives us the following

asymptotic curves.

53



(a) Isotropic (b) Hexagonal

(c) Cubic

Figure 4.16: Comparing total precipitate area for the the compositions 0.3 and 0.4

We can observe very clearly in the above figures that the total area very quickly

grows and asymptotically converges to its maximum value. That is, the initial growth

stage in evolving microstructures is driven by dissolution of component from the

matrix phase, leading to rapid component separability. The growth after this initial

stage becomes slower, something which will be captured in Section 4.3.1.

4.3 Precipitate tracking

There are specific phenomenon of interest when studying microstructural evolution

in precipitates such as directional growth or elongation, coalescence, inclination and

convexity. We take such test cases and demonstrate how our algorithms can identify

and track these phenomenon in the subsequent sections. We use isotropic microstruc-

tures of compositions 0.3, 0.4 and 0.5 as the test dataset to observe such phenomenon.

The features associated with the precipitate being tracked and it’s change in time is

plotted to demonstrate the above mentioned phenomenon.

54



4.3.1 Directional growth

Some precipitates grow more in a particular direction non-uniformly, due to the pres-

ence of external precipitates or concentration concentrations. Detection of this phe-

nomenon is usually a manual process. We apply our clustering and precipitate track-

ing algorithms to observe such a precipitate. Figure. 4.17 shows a precipitate growing

in one direction.

(a) time = t1 (b) time = t2

(c) time = t3 (d) time = t4

Figure 4.17: Directional Growth(t1 < t2 < t3 < t4)

In bi-directional symmetric growth, although the axis of the precipitate might

grow, the COG remains largely steady. The movement of the COG in a particular

direction is a indication of how uni-directional the precipitate growth is. Furthermore,

directional growth can also be captured by the elongation of the The plots in Fig. 4.18
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capture these features. It is evident that the elongation(captured by sphericity) and

the x-coordinate of the precipitate centre see sudden changes due to this directional

precipitate growth.

(a) Area/precipitate growth (b) Precipitate count

(c) Studying sphericity
(d) The x coordinate of COG shows a

trough, indicating left sided growth

Figure 4.18: Precipitate parameter visualization

4.3.2 Identifying Precipitate Coalescence

Many times, 2 precipitates coalescence to form a single precipitate. Identification of

such types of coalescence is easily noticed by observing the discontinuities in the area

of the tracked precipitate. The point of coalescence sees a significant jump in the

precipitate tracked area. Furthermore the elongation ( l
b
) also sees a discontinuity and

usually rises rapidly, since coalescence starts with an elongated structure.
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(a) time = t1 (b) time = t2

(c) time = t3 (d) time = t4

Figure 4.19: Coalescence: t1 < t2 < t3 < t4

We track the microstructure and calculate the area, length/breadth ratio and

inclination of the precipitate. It is easily observable that all quantities have a discon-

tinuity in time, especially the area of the precipitate. Thus, given such plots we can

identify instances of coalescence in the microstructure.
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(a) Discontinuity in area implies start of

coalescence

(b) Sudden elongation is presage to fu-

ture coalescence

(c) Angle of inclination determines direc-

tion of agglomeration

Figure 4.20: Coalescence: Identification and Tracking

4.3.3 Precipitate inclination

The presence of a perfectly spherical precipitate leads to no angle of inclination, so

in such cases random noise is usually observed. But more often, due to anisotropy,

we generally observe a detectable angle of inclination and elongation ratio. Angle of

inclination is calculated by fitting the best ellipse on the precipitate and calculating

the inclination with a vertical line, while elongation is defined as the ratio of major

and minor axis of the same ellipse. We study one such precipitate growth here, where

the inclination and elongation is easily observable.
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(a) time=t1 (b) time=t2

(c) time=t3 (d) time=t4

Figure 4.21: Rapidly evolving precipitate to study elongation: t1 < t2 < t3 < t4
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(a) We observe a steady precipitate

growth

(b) The elongation is easily observ-

able

(c) The angle hovers around the 36◦

mark(y-axis)

Figure 4.22: Inclination is easily observable in the tracked precipitates

It is easy to observe that the elongation ratio drops rapidly as the precipitate

becomes more spherical. Moreover, the angle of inclination remains constant at 36◦.

Thus, by using these curves, we can estimate the shape change observed in a precip-

itate during it’s evolution.

4.4 Elastic constants

Based on the algorithm mentioned in Section 3.3, we calculate the stiffness matrix

of our microstructures. We calculate them for 3 types of microstructures namely

isotropic, cubic and hexagonal for precipitate compositions of 0.3, 0.4 and 0.5 for

over 1000 time steps of evolution. For the calculation of the shear modulus or C44,

we use a non-dimensional pure shear stress state of 0.5.

The matrix phase elastic modulus or Cm
ij were set as Cm

11 = 250, Cm
12=100 and Cm

44=

75. The precipitate phase elastic modulus or Cp
ij were set as Cp

11 = 500, Cp
12=200 and

Cp
44= 150. The ratios were adjusted to ensure that both the matrix and precipitate

phase we individually isotropic by the Zener anisotropy parameter (2C44/(C11−C12) =

1).
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We choose 4 loading conditions to set up Hooke’s law equations, as mentioned in

the table below.

Loading Conditions for Stiffness Matrix calculation

Loading Number σ11 σ22 σ12

Loading 1 0.0 -0.5 0.0

Loading 2 0.4 -0.4 0.0

Loading 3 0.3 0.0 0.0

Loading 4 0.3 0.2 0.0

For each loading condition, the strain values are calculated by solving the equation

of mechanical equilibrium, to get 4 stress-strain responses for each microstructure. For

instance, the stress strain response for a typical 2D cubic composite microstructure

of composition 0.3 is given below

Stress-strain values

Loading Number σ11 σ22 σ12 ε11 ε22 ε12

Loading 1 0.0 -0.5 0.0 0.000776 -0.001956 0.0

Loading 2 0.4 -0.4 0.0 0.002186 -0.002185 0.0

Loading 3 0.3 0.0 0.0 0.001174 -0.000466 0.0

Loading 4 0.3 0.2 0.0 0.000864 0.000317 0.0

Given these loading conditions, by the method of regression mentioned in Section

3.3, we can estimate the values of C11 and C12. We also calculate the 95% confidence

interval for the values of C11 and C12 to ensure a good fit. The table below demon-

strates the obtained values of C11 and C12 for the microstructure image represented

in table above.

Cij Lower 95% confidence Cijkl value Upper 95% confidence

C11 303.22541 303.22548 303.22555

C12 120.30360 120.30364 120.30368

C22 303.38537 303.38540 303.38544

These values are well within the upper and lower bounds from the rule of mixtures,

which bounds C11 and C22 in [294,325] and C12 in [117,130]. We also check for the

Hashin-Shtrikman bounds [35] for our compositions and elastic values. Our bulk

modulus(K) bounds are fairly close to the bounds derived from Hashin-Shtrikman,

as demonstrated below.
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Composition C11 C12 K K upper bound K Lower bound

0.3 303 121 181.69 184.61 181.57

0.4 326 129 194.96 197.72 194.11

0.5 354 138 210.52 211.76 207.69

Similarly, the upper and lower bounds for shear modulus from the Hashin-Shtrikman

method are in the interval [105,107], while our calculations resulted in a shear mod-

ulus of 96.40 for a composition of 0.5. Similar behaviour was observed at different

compositions, where the observed shear modulus was 10% lower than the Hashin-

Shtrikman lower bound. We expect this to be an effect of our shear loading condition

and the effect of shear loading on periodic boundary conditions, and thus this will be

investigated further.

We can also observe how the elastic constants change as the microstructure evolves,

and the change in the constants on changing the composition.

Figure 4.23: Plotting C11 in an evolving microstructure
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Figure 4.24: Comparing C11 change with composition

We can also fix the composition and study the effect of anisotropy on the elas-

tic constants. The figure below shows the C11 of isotropic, cubic and hexagonal

microstructures evolving in time with varying compositions.
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Figure 4.25: Comparing C11 change with anisotropy

From Fig. 4.25, it is clear that for the compositions 0.3 and 0.4, anisotropy does

not play a big part in the elastic constants since the elastic modulus are fairly close

to each other. Only at a 50% precipitate composition is there a tangible difference in

C11. This could be because the spatial distribution of the varying precipitates only

dominates at a 0.5 composition, when the microstructure looks like fine spinodes.

Furthermore, the tetragonal approximations taken to calculate C11 or C12 leads to a

higher error bar on the elastic modulus, for instance the C12 values’ 95% confidence

interval can range from 138 to 140, while we report a C12 of 139. Thus, better

measures or techniques are needed to perfectly quantify the properties of hexagonal

composites.
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Now that we have calculated the trend-lines for the elastic modulus or stiffness

matrix, we try to correlate this property with the characterisation techniques we have

discussed before.

4.5 Microstructure Property Correlation

We now try to explain the trends in the elastic constants in the evolving microstruc-

tures based on the statistical measures we have calculated. Let us consider the flat-

tening of C11 curve in cubic microstructures after the initial stages of evolution, as

shown in Figure 4.23. The C11 values flatten out near 325 after 600 time steps, while

they show significant volatility in the first 100 time steps.

To capture this, let us consider the cross-correlations of the cubic microstructures,

an example shown below.

Figure 4.26: Cross-correlation matrix of a cubic microstructure

Traditionally, a radial correlation plot would be used to express the precipitate

distribution. To incorporate a feature of anisotropy, let us consider how the probabil-

ity in the correlation matrix changes at different angles, like 0, 45, 90 and 135 degrees.

This gives us 4 plots which capture probability differences along 4 directions.
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(a) θ=0 (b) θ=45

(c) θ=90 (d) θ=135

Figure 4.27: Radial correlations along angles

These 4 act as our feature vectors, and can thus be concatenated into a single

feature vector to represent our microstructure, which gives us a single plot capturing

the radial distribution and anisotropy.

Figure 4.28: Final feature vector
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Let us now see how these probability values along particular angles change with the

evolution of the microstructure, in the initial and latter stages of the microstructure

respectively.

To capture this, we superimpose these plots for the different time steps, and

visualize the higher time steps by darker lines. The two figures show how much these

feature vectors vary in the first 100 time-steps and the last 500 time-steps respectively.

(a) Initial evolution

(b) Latter stages of evolution

Figure 4.29: Comparing changes in feature vectors in different evolution regimes

As seen in Figure 4.29, there is significant variation in the feature vector in the

first 100 time steps, as demonstrated by the band of shaded red lines in Fig. 4.29a.

In latter stages, the feature vectors are fairly close, and appear co-linear in Fig.

4.29b. This demonstrates comprehensively that the flattening of elastic modulus

curve in latter stages evolving microstructures is correlated with the constant nature

of their feature vectors.
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Chapter 5

Summary

Data oriented material design is dependent on efficient and useful feature extraction

from sources like microstructure images. Algorithms and workflows are needed to

simplify extraction of statistical and geometric features, since manual extraction is

time consuming. Physical tests and experiments are also time and cost consuming,

which makes computational data generation an important aspect of materials design.

Firstly, this report aims to identify the features best suited for characterisation and

provide robust computationally efficient algorithms for their extraction. By compar-

ing various algorithms and features from literature, and implementing them on com-

putationally generated microstructures, the algorithms and computations required

are laid out in this report. The results and plots obtained validate the algorithms,

and also provide a visual method of interpreting microstructures. The features ex-

tracted quantify the inherent composition distribution, and help draw conclusions

from them.

Secondly, we lay out robust computational techniques to calculate the properties

associated with microstructures, and provide statistical frameworks and approxima-

tions that simplify their extraction. This can be thought of as an exercise in building

the data that can then be used to look for correlations or patterns with our structures.

Finally, we give examples to show how this structure-property correlation can be

developed. This is the end goal that we hoped to reach, to fast forward the prediction

of structures which lead to desirable material properties.
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